a2 United States Patent

Pan et al.

US009483327B2

US 9,483,327 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

(56)

6,086,623 A
6,529,985 Bl

MECHANISM FOR INTERPOSING ON
OPERATING SYSTEM CALLS

Applicant: Vormetric, Inc., San Jose, CA (US)

Inventors: Feng Pan, San Jose, CA (US); Sri
Sudarsan, San Jose, CA (US)
Assignee: Vormetric, Inc., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 7 days.

Appl. No.: 14/539,634

Filed: Nov. 12, 2014

Prior Publication Data

US 2016/0132365 Al May 12, 2016

Int. CL.

GOG6F 9/44 (2006.01)

GOG6F 9/54 (2006.01)

U.S. CL

CPC oo, GOG6F 9/54 (2013.01)
Field of Classification Search

None

See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS

7/2000 Broome et al.
3/2003 Deianov et al.

6,587,888 Bl 7/2003 Chieu et al.

6,996,832 B2* 22006 Gunduc ... GO6F 9/54
719/328

7,360,223 B2 4/2008 Durai

8,230,399 B2 7/2012 Vertes
2005/0039190 Al* 2/2005 Rees GO6F 11/3419
719/316
2006/0143350 Al* 6/2006 Miloushev et al. 710/242
2011/0264959 A1* 10/2011 Subhraveti GO6F 11/3636
714/35
2012/0255004 Al* 10/2012 Sallam ..o 726/23
2012/0290718 Al* 11/2012 Nethercutt 709/224

OTHER PUBLICATIONS

International Search Report, PCT/US2015/059413, mailed Feb. 19,
2016.

* cited by examiner

Primary Examiner — Andy Ho

Assistant Examiner — Abdou Seye

(74) Attorney, Agent, or Firm — Womble Carlyle
Sandridge & Rice LLP

(57) ABSTRACT

A method for interposing on operating system calls in a host
is provided. The method includes patching an operating
system kernel function, the patching comprising adding a
first pointer that invokes an agent function, the patching
performed by an agent. The method includes executing the
agent function, responsive to a system call stub calling the
operating system kernel function, which invokes the agent
function via the first pointer, wherein at least one action of
the method is performed by a processor of a host having an
operating system.

20 Claims, 6 Drawing Sheets

4028 . 402A~
Host 2 HTTPS |Host1
404~ 406B~, ' 404
CPU ‘ | Application 2 | Application 1
I8 F06C~ User 406A
Agent 3rd Party Application Spfge
AT Agenw | Lwe el N |
Funciion(s)// 420 416 :
Ponter System Cali !
-\=% Intercept /table
422 1 Kemel
424| 418~
Sysem_F1 - Space
ystem_F1() X|X|8 42|
System_F2() Y P H
w | 7]z i
106~ | !
1426 - 1

428

System_F3()

424

System_F1
System_2

System_F3
) .

03 Kemel Functions

430

U.S. Patent Nov. 1, 2016 Sheet 1 of 6 US 9,483,327 B2

102~

Application

1. Requests operating system service "process creation”
by making a system trap. One parameter
104~ identifies the OS service

¥
Kernel frap handler

2. Trap handler validates trap number. Gets function
106~ address from the system call vector, Executes that function.

4

System call vector

108~ ¥
Process creation STUBM

3. Process creation STUBT obtains the systen
110~ {rap parameters

¥

FProcess creation STUBZ

4, Process creation STUBZ prepares for the
112 -|__generic software

Process creation generic function

FIG. 1

U.S. Patent Nov. 1, 2016 Sheet 2 of 6 US 9,483,327 B2

102~

Application

1. Requests operating system service "process creation”
by making a system trap. One parameter
104~ identifies the OS service

¥
Kernel trap handler

2. Trap handler validates trap number. Gets function
106 address from the system call vector. Executes that function.
¥

System call vector

202~ i
3rd party process creation function

3. 37 party process creation function executes
code before generic process creation function

4. 3% party process creation function executes
process creation STUB2 function

4, 3 party process creation function executes
110~ cade after generic process creation function

Process creation STUBZ

5. Process creation STUBZ prepares for
the generic function

112~ ¥
Process creation generic function

FIG. 2

U.S. Patent Nov. 1, 2016 Sheet 3 of 6 US 9,483,327 B2

102~
Application
1. Regquests operating system service "process creation”
by making a system trap. One parameter
104~ J Lidentifies the OS service

Kernel trap handler

2. Trap handler validates trap number. Gets function
address from the system call vector. Execuies that function.

106~ :

System call vector

202~ v
37 party process creation function

3, 3d party process creation function executes
code before generic process creation STUB function

4.3 party process creation function execuies the
host OS Process creation STUBZ function

9. 37d parly process creation function execules

302~ |code after generic process creation function
Procass creation STUBZ patched
by agent
5. Process creation STUBZ calls vormetric process
304~ + Lereation function

Agent process creation function

6. Agent process creation function executes code
before generic process creation function

7. Agent process creation function execules the
generic process creation function

8. Agent process creation function executes code
112~ after the generic process creation function

¥
Process creation generic function

FIG. 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 6
4028~
Host 2 HTTPS
404~ 4068~
CPU Application 2
408~ A06C~
Agent 3rd Party Application | |SPace)
410 |
] Agent - 420 416 E
System Call ;
Intercept /table g
418 igemeii
System_F1{) 1 X1 X1 s zf?g’eg
System F2() e Y v|p 5
424 AR f
106~ | |
426~¢ - |
STUB () |
» System_F3{} ko 494 E
428~ . ;
» OS Kemel Functions i
* System_F1 i
System_F2 430 E
System_F3 {Pointer] |

» | Application 1

US 9,483,327 B2

402A~
Host 1

CPU
404~

406A

U.S. Patent Nov. 1, 2016 Sheet 5 of 6 US 9,483,327 B2

502~

Save address of system kernal function as
second pointer

504~ ¥

Patch system kernel function with first pointer,
pointing o agent function

506~ v
Application requests operating system sarvice

508~ ¥
System trap calls process creation STUB

510~ ¥

Process creation stub calls patched operating
system Kernal function

512~ ¥
Execute agent function

FIG. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 6 US 9,483,327 B2

601~ 603~
CPU Memory |
605~ 609~
Input/output
BUS npge\%gepu
607~
Mass Storage

Display

US 9,483,327 B2

1
MECHANISM FOR INTERPOSING ON
OPERATING SYSTEM CALLS

BACKGROUND

Third-party software, in some instances, intercepts oper-
ating system calls in order to perform various functions.
Although the LINUX™ operating system is popular,
LINUX™ gystem calls are more difficult to intercept than
system calls in other operating systems, especially as com-
pared to UNIX™. Some of the difficulties with intercepting
the system calls include indirect means to read non-exported
kernel symbols, special means to overwrite system call
vectors (which are normally protected as read-only values),
and special ways to handle stub assembler code that is put
in place for fork, vfork, execve and clone system call
vectors. Frequent system call-related changes in the
LINUX™ kernel require developers to repeatedly expend
porting efforts. Interoperability among third-party products,
including access control products, may be problematic.
Therefore, there is a need in the art for a solution which
overcomes the drawbacks described above.

SUMMARY

In some embodiments, a method for interposing on oper-
ating system calls in a host is provided. The method includes
patching an operating system kernel function, the patching
comprising adding a first pointer that invokes an agent
function, the patching performed by an agent. The method
includes executing the agent function, responsive to a sys-
tem call stub calling the operating system kernel function,
which invokes the agent function via the first pointer,
wherein at least one action of the method is performed by a
processor of a host having an operating system.

In some embodiments, a tangible, non-transitory, com-
puter-readable media having instructions thereupon which,
when executed by a processor, cause the processor to
perform a method. The method includes overwriting a
portion of an operating system kernel function to install a
first pointer, the first pointer pointing to an agent function.
The method includes executing the agent function, respon-
sive to a system call stub calling the operating system kernel
function having the first pointer installed therein.

In some embodiments, a host system, with an operating
system, is provided. The host system includes a processor, a
memory coupled to the processor and having a system call
vector and a plurality of operating system kernel functions
therein and an agent stored in the memory. The agent is
configured to retain an address of an operating system kernel
function. The agent is configured to modify the operating
system kernel function to point to an agent function, such
that a system call stub calls the agent function via the
modified operating system kernel function. The agent is
configured to call the operating system kernel function via
the retained address of the operating system kernel function.

Other aspects and advantages of the embodiments will
become apparent from the following detailed description
taken in conjunction with the accompanying drawings which
illustrate, by way of example, the principles of the described
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The described embodiments and the advantages thereof
may best be understood by reference to the following
description taken in conjunction with the accompanying

10

15

20

25

30

35

40

45

50

55

60

2

drawings. These drawings in no way limit any changes in
form and detail that may be made to the described embodi-
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments.

FIG. 1 depicts a mechanism for an application to access
operating system kernel services.

FIG. 2 depicts a mechanism for third-party interception of
a system call vector.

FIG. 3 depicts a mechanism for interposing on operating
system calls, in accordance with some embodiments.

FIG. 4 is a system diagram illustrating two hosts inter-
acting, one of which has an agent implementing the mecha-
nism of FIG. 3 in accordance with some embodiments.

FIG. 5 is a flow diagram of a method for interposing on
operating system calls, which can be practiced using the
mechanism of FIG. 3 or the system of FIG. 4, in accordance
with some embodiments.

FIG. 6 is an illustration showing an exemplary computing
device which may implement the embodiments described
herein.

DETAILED DESCRIPTION

A mechanism for interposing on operating system calls,
which does not rely on modifying the system call vector
table, is described. Third-party software products may still
overwrite entries on the system call vector table. Although
examples are described herein as applying to the LINUX™
operating system, embodiments generally apply to any oper-
ating systems that employ a function called a stub, for
operating on multiple hardware platforms. Rather than
modifying the system call vector table, the embodiments
patch the operating system kernel functions to point to an
agent function. The agent function is executed when a
patched operating system kernel function is called by the
stub, irrespective of whether third-party products modify the
system call vector table. The present solution thus avoids the
interoperability problems among third-party products, and
does not require repeated porting when changes are made to
system calls and their stub implementations in the operating
system kernel.

FIG. 1 depicts a known mechanism for an application 102
to access operating system kernel services. The present
solution can be applied to this known mechanism. The
example is applicable to LINUX™, as well as other oper-
ating systems. The application 102 requests an operating
system service (i.e., a kernel service), which the operating
system handles by making a system trap and initiating a
process creation. One parameter identifies the operating
system service with a number. The kernel trap handler 104
validates this trap number, and uses the trap number to
access a vector of addresses of kernel-level functions. The
kernel trap handler 104 gets a process creation stub from the
system call vector 106. The kernel trap handler 104 then
executes the selected stub.

Executing the selected stub results in process creation
(e.g. forking or cloning), process execution or similar stubs
and process destruction, and possible further actions. The
process creation stub (i.e., the selected stub) has a first
process creation stub 108 (e.g., Stubl), which obtains sys-
tem trap parameters. The first process creation stub also has
a second process creation stub 110 (e.g., Stub2), which
prepares for generic software. This results in execution of a
selected process creation function 112, e.g., a generic func-
tion. In this manner, the application request for an operating
system kernel service is fulfilled.

US 9,483,327 B2

3

FIG. 2 depicts a known mechanism for third-party inter-
ception of a system call vector. The present solution can be
applied to this known mechanism. As with FIG. 1, this
example is applicable to LINUX™, and may be applicable
to other operating systems. Some third-party software prod-
ucts enhance an operating system by taking various actions
when an application requests an operating system service via
a system trap. In such cases, the third-party software locates
a vector entry for the system call of interest, and substitutes
a function address for a third-party function. Generally, the
third-party software records the address of the operating
system process creation stub 110, so that the third-party
software code can execute the host operating system func-
tion at a point chosen by that third-party software. The
third-party software function can perform actions before
and/or after the original operating system function.

Here, the third-party software patches the system call
vector 106, to point to the third-party process creation
function 202. The application 102 may be distinct from the
third-party software, or these may be interrelated or com-
bined. Typically, the patch involves writing a pointer over
the original system call vector. As above, the application 102
requests an operating system service (i.e., a kernel service),
which is handled by making a system trap and initiating a
process creation. One parameter identifies the operating
system service with a number. The kernel trap handler 104
validates the trap number. The kernel trap handler 104 gets
a process creation stub from the system call vector 106.
However, this time the process creation stub calls the
third-party process creation function 202, since the system
call vector 106 has been modified by the third-party soft-
ware. The kernel trap handler 104 then executes the third-
party process creation function 202.

Executing the third-party process creation function 202,
or a third-party process execution function results in oper-
ating system process creation or operating system process
execution, and possible further actions. One of the processes
created executes code from the third-party software, which
may be executed before or after the operating system kernel
service. In the example shown, the third-party process
creation function 202 executes third-party code before the
host operating system process creation function. Then, the
third-party process creation function executes the process
creation stub2 110 function. This process prepares for the
generic process creation function shown as the selected
process creation function 112. In the example shown, the
third-party process creation function 202 then executes
third-party code after the host operating system process
creation function. In this manner, both the application
request for an operating system kernel service, and the
third-party interception of the system call vector, are ful-
filled. Problems arise when multiple third-party software
applications patch the system call vector 106. If the same
vector is overwritten, first by one third-party software appli-
cation and later by another third-party software application,
the first one loses and is dislodged. This situation will be
further described with reference to FIG. 4.

FIG. 3 depicts a mechanism for interposing on operating
system calls, in accordance with some embodiments. This
example follows and modifies the scenario depicted in FIG.
2, and retains the third-party software patch to the system
call vector 106. It should be appreciated that the present
mechanism could also be applied to the scenario depicted in
FIG. 1, in which there is no third-party patch to the system
call vector 106. In both cases, the present mechanism
employs an agent (e.g., a Vormetric™ agent) that patches the
operating system kernel functions, causing an agent function

10

15

20

25

30

35

40

45

50

55

60

65

4

to be called and executed as a semantic equivalent to the
operating system kernel function. As with FIGS. 1 and 2,
this example is applicable to LINUX™, and may be appli-
cable to other operating systems.

As above, the application 102 requests an operating
system service (i.e., a kernel service), which is handled by
making a system trap and initiating a process creation. One
parameter identifies the operating system service with a
number, i.e. the trap number. The kernel trap handler 104
validates the trap number. The kernel trap handler 104 gets
a process creation stub from the system call vector 106. As
in FIG. 2, the process creation stub calls the third-party
process creation function 202, since the system call vector
106 has been modified by the third-party software. The
kernel trap handler 104 then executes the third-party process
creation function 202.

Executing the third-party process creation function 202 or
the third-party process execution function, results in process
creation or process execution and process destruction, and
possible further actions. One of the processes created
executes code from the third-party software, which may be
executed before or after the operating system kernel service.
In the example shown, the third-party process creation
function 202 executes third-party code before the host
operating system process creation function. Then, the third-
party process creation function executes the patched process
creation stub2 302 function. As far as the third-party soft-
ware is concerned, it is executing the same process creation
stub 110 as shown in FIG. 2, as the third-party software is
unaware of the agent patch. But, executing the patched
process creation stub2 302 calls the agent process creation
function 304. The agent process creation function 304
executes code, such as an agent function, then executes the
process creation generic function 112. In the example
shown, the agent process creation function then executes
further code, such as another agent function or a continua-
tion of the agent function, after the host operating system
process creation function. In variations, the agent process
creation function could execute an agent function before or
after the selected process creation generic function 112, or
both, or could execute just the agent function as a replace-
ment, and neither select nor execute a kernel function. In this
manner, the application request for an operating system
kernel service, the third-party interception of the system call
vector, and the execution of the agent function, as arranged
by the interposing on the operating system call, are all
fulfilled.

FIG. 4 is a system diagram illustrating two hosts 402
interacting, one of which has an agent 408 implementing the
mechanism of FIG. 3. Example applications 406 are
described herein, although the below scenario could apply to
further applications, and the mechanism and principles
could apply to further embodiments and further operating
systems. A first host 402A “Host 1” has a first application
406 A “Application 1” operating under an operating system.
A second host 402B “Host 2” has a second application 4068
“Application 2” and a third-party application 406C operat-
ing under an operating system. The hosts 402 could be
servers or other computing devices, and could be physical
machines or virtual machines implemented with physical
resources. Each host 402A, 402B has a CPU (central pro-
cessing unit) 404 which could be a single processor or
multiprocessor embodiment. The second host 402B has an
agent 408, which has one or more agent functions 420.

The hosts 402A, 402B are communicating via a network
414 such as the global communication network known as the
Internet. For example, they are communicating with the

US 9,483,327 B2

5

secure communication protocol HTTPS (hypertext terminal
protocol, secure). User space 410 is indicated as the portion
of each host 402 (e.g., software, user interfaces) with which
a user can interact. The applications 406 reside in user space,
as does the HTTPS communication channel. Kernel space
412 is indicated as the portion of each host 402 that manages
input/output requests from software and manages other
operating system functions, i.e., kernel functions.

Inkernel space 412 on the second host 402B, a system call
intercept/table 416 is used by the operating system for
system calls, as described above with reference to FIGS. 1-3.
Example entries for the system call vector table 418 are
shown as “X, Y, Z”. Each entry in the system call vector
table 418 is a vector quantity or stub case for the system call
intercept/table 416, and has an address which points to code
in the operating system kernel functions 428. This pointing
may have one or more levels of indirection. As an example
for patching by the third-party application 406C, the entries
could be replaced by one or more of “X', Y, Z"’, which could
in turn be replaced by another third-party application by one
or more of “S, P, Q”, causing the aforementioned interop-
erability problems.

Also found in kernel space 412 on the second host 402B,
as mentioned above, are the operating system kernel func-
tions 428. The agent 408 occupies both user space 410 and
kernel space 412, on the second host 402B. That is, a portion
of the agent 408 acts as an application, and is accessible for
user interaction, for example for an administrator to set
parameters. A further portion of the agent 408 operates in
kernel space 412, to place a patch 432 in the Linux operating
system kernel functions 428. The patch 432 is part of the
mechanism for interposing on operating system calls, and
includes overwriting one or a portion of the operating
system kernel functions 428 with a first pointer 430, as is
further described in the scenario below.

The first application 406 A, on the first host 402A, could
be software for inventory management, credit card or per-
sonal data management, or sales and purchases, as operated
by various users in a retail environment. The second appli-
cation 4068, on the second host 402B, could be software for
accounting, database management, backup, archiving or
other function(s) with which the first application 406A
interacts, or could be unrelated to the first application 406A.
The third-party application 406C could be an access control
product that intercepts system calls under a secure filesys-
tem. The agent 408 could be or include software that sets up
and manages attributes involved in encryption and decryp-
tion for the secure filesystem. The secure filesystem is
transparent under the first and second applications 406A,
406B.

As in the examples of FIGS. 2 and 3, the third-party
application 406C patches the system call intercept/table 416,
by overwriting a vector quantity (i.e., one of the entries) of
the system call vector table 418 in the system call intercept/
table 416. It does so in order to execute third-party appli-
cation code when the second application 4068 requests an
operating system service, resulting in a system call. The
agent 408 patches the operating system kernel functions
428, as follows.

The agent 408 saves the address of the operating system
kernel function 428, for example, the address of the kernel
function “system_F3”, as a pointer 422 in or coupled to the
agent functions 420. For example, the agent 408 could store
this as a second pointer 422 in memory in the second host
402B. The agent 408 places the first pointer 430 in the Linux
operating system kernel functions 428, for example by
overwriting a portion of the kernel function “system_F3”.

20

25

35

40

45

50

6

The patch 432 causes the specified operating system kernel
function 428 to point to the agent function 420, via the first
pointer 430. The agent 408 retains the second pointer 422 so
as to be able to call the operating system kernel function 428,
as described with reference to FIG. 3.

Continuing with the above scenario, the second applica-
tion 406B requests an operating system service, resulting in
a system trap and initiating a process creation. Executing the
third-party process creation function 202 (with reference
back to FIG. 3) results in calling the stub function 426, e.g.,
“stub_1 (). In this scenario, stub_1 () is an example of a
process creation stub2 302 function, with parameters in the
parentheses. The stub function 426 calls one of the operating
system kernel functions 428, e.g., “system_F3 ()”. In this
scenario, system_F3 () is an example of the patched
LINUX™ operating system kernel function 428. Because of
the patch 432, calling the modified LINUX™ operating
system kernel function 428 results in executing the agent
function 420 pointed to by the first pointer 430. Other
system calls 424 can be called based on the system call
intercept/table 416, and these can call and execute other
LINUX™ operating system kernel functions 428 in the
usual manner. The agent function 420 can call the LINUX™
operating system kernel function 428 via the second pointer
422, as described above with reference to FIG. 3. More than
one of the LINUX™ operating system kernel function 428
could be patched, and calls to one of these as modified
perform as above. Specific examples of the patch 432 as
applied to a secure filesystem “secfs” are given below.

In one example, a stub implementation which has the
following call hierarchy: sys_call_table[NR_
execve]->stub_execve()->sys_execve()->do_
execve()->open_exec() would have the following hierarchy
after sects patching: sys_call_table[_NR_execve]->stub_ex-
ecve->sys_execve->do_execve->m_open_exec->open_
exec
Here, instead of manipulating at a higher system call layer
(e.g., stub_execve() or sys_execve() functions), the agent
patches open_exec() to call the m_open_exec() function
(i.e., the modified operating system kernel function, which
causes the agent function to execute). Typically, a third-party
product would manipulate at the stub_execve() or sys_ex-
ecve() functions, but would continue to call the patched
functions such as m_open_exec() via third-party products or
operating system native system call vectors.

In one embodiment, the agent 408 has a secure filesystem
(secfs) kernel module that interposes system call handlers
into the system call intercept/table 416 for detecting and
implementing the following:

(a) Process creation, execution and exit. Establishment of
trusted status, access control and detection and auditing of
setuid executables (i.e., user alias detection) is accomplished
by interception of these classes of system calls.

(b) Guarding of automounted (e.g., autofs) file systems by
interception of mount, umount and related system calls.
Interception of mount system calls also permits the secfs
kernel module to fail attempts to mount on top of guarded
filesystems.

(c) Failing attempts to forcibly unload kernel modules.

(d) Failing system calls that are used to terminate agent
processes.

FIG. 5 is a flow diagram of a method for interposing on
operating system calls, which can be practiced using the
mechanism of FIG. 3 or the system of FIG. 4, among other
possibilities. The method can be practiced by a processor,
such as a processor of a host server or other computing
device that has an operating system with kernel functions.

US 9,483,327 B2

7

The address of a system kernel function is saved, as a
second pointer, in an action 502. This action can be per-
formed by an agent in the host server, and the pointer is
saved so that the agent can later call the system kernel
function via the second pointer. The system kernel function
is patched with a first pointer, in an action 504. The first
pointer points to an agent function. Patching can be per-
formed by overwriting a portion of the operating system
kernel function, writing the first pointer as a patch, as
depicted in FIG. 4.

An application requests an operating system service, in an
action 506. This and related actions are described with
reference to FIGS. 1-3. A system trap calls a process creation
stub, in an action 508. For example, the system trap could
get a process creation stub from a system call vector, e.g., the
system call vector table 418 shown in FIG. 4. This could
invoke the operating system process creation stub directly, if
there is no third-party interception of the system call vector.
Or, the third party software could invoke the operating
system process creation stub, if the third-party software has
intercepted the system call vector.

The process creation stub calls the patched operating
system kernel function, in an action 510. This action is
described with reference to FIGS. 3 and 4. The patched
operating system kernel function has the first pointer, which
points to the agent function, per the action 504. The agent
function is executed, in an action 512, as a result of the
process creation stub calling the patched operating system
kernel function. The agent function may replace the oper-
ating system kernel function, or call the operating system
kernel function before and/or after executing agent code.

It should be appreciated that the methods described herein
may be performed with a digital processing system, such as
a conventional, general-purpose computer system. Special
purpose computers, which are designed or programmed to
perform only one function may be used in the alternative.
FIG. 6 is an illustration showing an exemplary computing
device which may implement the embodiments described
herein. The computing device of FIG. 6 may be used to
perform embodiments of the functionality for interposing on
operating system calls in accordance with some embodi-
ments. The computing device includes a central processing
unit (CPU) 601, which is coupled through a bus 605 to a
memory 603, and mass storage device 607. Mass storage
device 607 represents a persistent data storage device such
as a floppy disc drive or a fixed disc drive, which may be
local or remote in some embodiments. The mass storage
device 607 could implement a backup storage, in some
embodiments. Memory 603 may include read only memory,
random access memory, etc. Applications resident on the
computing device may be stored on or accessed via a
computer readable medium such as memory 603 or mass
storage device 607 in some embodiments. Applications may
also be in the form of modulated electronic signals modu-
lated accessed via a network modem or other network
interface of the computing device. It should be appreciated
that CPU 601 may be embodied in a general-purpose
processor, a special purpose processor, or a specially pro-
grammed logic device in some embodiments.

Display 611 is in communication with CPU 601, memory
603, and mass storage device 607, through bus 605. Display
611 is configured to display any visualization tools or reports
associated with the system described herein. Input/output
device 609 is coupled to bus 605 in order to communicate
information in command selections to CPU 601. It should be
appreciated that data to and from external devices may be
communicated through the input/output device 609. CPU

10

15

20

25

30

35

40

45

50

55

60

65

8

601 can be defined to execute the functionality described
herein to enable the functionality described with reference to
FIGS. 1-5. The code embodying this functionality may be
stored within memory 603 or mass storage device 607 for
execution by a processor such as CPU 601 in some embodi-
ments. The operating system on the computing device may
be MS-WINDOWS™, UNIX™, [INUX™, or other known
operating systems. It should be appreciated that the embodi-
ments described herein may be integrated with virtualized
computing system also.

Detailed illustrative embodiments are disclosed herein.
However, specific functional details disclosed herein are
merely representative for purposes of describing embodi-
ments. Embodiments may, however, be embodied in many
alternate forms and should not be construed as limited to
only the embodiments set forth herein.

It should be understood that although the terms first,
second, etc. may be used herein to describe various steps or
calculations, these steps or calculations should not be lim-
ited by these terms. These terms are only used to distinguish
one step or calculation from another. For example, a first
calculation could be termed a second calculation, and,
similarly, a second step could be termed a first step, without
departing from the scope of this disclosure. As used herein,
the term “and/or” and the “/” symbol includes any and all
combinations of one or more of the associated listed items.

As used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “comprises”, “comprising”, “includes”,
and/or “including”, when used herein, specify the presence
of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
Therefore, the terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting.

It should also be noted that in some alternative imple-
mentations, the functions/acts noted may occur out of the
order noted in the figures. For example, two figures shown
in succession may in fact be executed substantially concur-
rently or may sometimes be executed in the reverse order,
depending upon the functionality/acts involved.

With the above embodiments in mind, it should be under-
stood that the embodiments might employ various com-
puter-implemented operations involving data stored in com-
puter systems. These operations are those requiring physical
manipulation of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. Further, the
manipulations performed are often referred to in terms, such
as producing, identifying, determining, or comparing. Any
of the operations described herein that form part of the
embodiments are useful machine operations. The embodi-
ments also relate to a device or an apparatus for performing
these operations. The apparatus can be specially constructed
for the required purpose, or the apparatus can be a general-
purpose computer selectively activated or configured by a
computer program stored in the computer. In particular,
various general-purpose machines can be used with com-
puter programs written in accordance with the teachings
herein, or it may be more convenient to construct a more
specialized apparatus to perform the required operations.

A module, an application, a layer, an agent or other
method-operable entity could be implemented as hardware,

US 9,483,327 B2

9

firmware, or a processor executing software, or combina-
tions thereof. It should be appreciated that, where a soft-
ware-based embodiment is disclosed herein, the software
can be embodied in a physical machine such as a controller.
For example, a controller could include a first module and a
second module. A controller could be configured to perform
various actions, e.g., of a method, an application, a layer or
an agent.

The embodiments can also be embodied as computer
readable code on a tangible non-transitory computer read-
able medium. The computer readable medium is any data
storage device that can store data, which can be thereafter
read by a computer system. Examples of the computer
readable medium include hard drives, network attached
storage (NAS), read-only memory, random-access memory,
CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other
optical and non-optical data storage devices. The computer
readable medium can also be distributed over a network
coupled computer system so that the computer readable code
is stored and executed in a distributed fashion. Embodiments
described herein may be practiced with various computer
system configurations including hand-held devices, tablets,
microprocessor systems, microprocessor-based or program-
mable consumer electronics, minicomputers, mainframe
computers and the like. The embodiments can also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a wire-based or wireless network.

Although the method operations were described in a
specific order, it should be understood that other operations
may be performed in between described operations,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing.

In various embodiments, one or more portions of the
methods and mechanisms described herein may form part of
a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (laaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). In laaS,
computer infrastructure is delivered as a service. In such a
case, the computing equipment is generally owned and
operated by the service provider. In the PaaS model, soft-
ware tools and underlying equipment used by developers to
develop software solutions may be provided as a service and
hosted by the service provider. SaaS typically includes a
service provider licensing software as a service on demand.
The service provider may host the software, or may deploy
the software to a customer for a given period of time.
Numerous combinations of the above models are possible
and are contemplated.

Various units, circuits, or other components may be
described or claimed as “configured to” perform a task or
tasks. In such contexts, the phrase “configured to” is used to
connote structure by indicating that the units/circuits/com-
ponents include structure (e.g., circuitry) that performs the
task or tasks during operation. As such, the unit/circuit/
component can be said to be configured to perform the task
even when the specified unit/circuit/component is not cur-
rently operational (e.g., is not on). The units/circuits/com-
ponents used with the “configured to” language include
hardware—for example, circuits, memory storing program
instructions executable to implement the operation, etc.
Reciting that a unit/circuit/component is “configured to”

10

15

20

25

30

35

40

45

50

55

60

65

10

perform one or more tasks is expressly intended not to
invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/
component. Additionally, “configured to” can include
generic structure (e.g., generic circuitry) that is manipulated
by software and/or firmware (e.g., an FPGA or a general-
purpose processor executing software) to operate in manner
that is capable of performing the task(s) at issue. “Config-
ured to” may also include adapting a manufacturing process
(e.g., a semiconductor fabrication facility) to fabricate
devices (e.g., integrated circuits) that are adapted to imple-
ment or perform one or more tasks.

The foregoing description, for the purpose of explanation,
has been described with reference to specific embodiments.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
embodiments and its practical applications, to thereby
enable others skilled in the art to best utilize the embodi-
ments and various modifications as may be suited to the
particular use contemplated. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope and
equivalents of the appended claims.

What is claimed is:

1. A method for interposing on operating system calls in
a host, comprising:

patching an operating system kernel function, the patch-

ing comprising adding a first pointer that invokes an
agent function;

executing the agent function, responsive to a system call

stub calling the operating system kernel function,

which invokes the agent function via the first pointer,

the executing comprising;

handling a system trap, responsive to an application
requesting a system call service;

obtaining the system call stub from a system call vector,
responsive to the handling the system trap;

executing the system call stub, wherein one of a third
party process creation function executes code before
a process creation stub function, the third party
process creation function executes code after the
process creation stub function, or no third party
process creation function executes code before or
after the process creation stub function; and

calling the operating system kernel function from the
system call stub.

2. The method of claim 1, wherein the patching is
performed by an agent without the agent patching a system
call vector table.

3. The method of claim 1, further comprising:

invoking the operating system kernel function from the

agent function, wherein the agent function includes a
second pointer, which points back to the operating
system kernel function.

4. The method of claim 1, further comprising:

executing an agent process creation or execution function,

responsive to the system call stub calling the agent
process creation or execution function via the first
pointer, wherein the agent process creation or execution
function invokes the agent function and the operating
system kernel function; and

executing the operating system kernel function, before or

after executing the agent function.

US 9,483,327 B2

11

5. The method of claim 1, wherein the patching overwrites
an operating system call stub function with a semantic
equivalent in the agent function, which in turn calls the
operating system stub function.

6. The method of claim 1, further comprising:

executing the system call stub, responsive to a system trap

incurred by an application, wherein the system call stub
includes a common stub and a platform selection stub,
and wherein the platform selection stub calls the oper-
ating system kernel function.

7. The method of claim 1, wherein patching the operating
system kernel function includes:

saving an address of the operating system kernel function,

wherein the address of the operating system kernel
function is available to the agent to call the operating
system kernel function; and

writing the first pointer into memory of the host so that the

system call stub calls the agent function via the first
pointer.

8. The method of claim 1, wherein the patching ensures
that the agent function executes regardless of whether a
third-party software modifies a system call vector that is
employed by the system call stub to call the operating
system kernel function.

9. A tangible, non-transitory, computer-readable media
having instructions thereupon which, when executed by a
processor, cause the processor to perform a method com-
prising:

overwriting a portion of an operating system Kkernel

function to install a first pointer in the operating system
kernel function, the first pointer pointing to an agent
function;

executing the agent function, responsive to a system call

stub calling, via a system call intercept table, the

operating system kernel function having the first

pointer installed therein in a portion of memory distinct

from the system call intercept table, the executing

comprising;

obtaining the system call stub from a system call vector,
responsive to handling a system trap;

executing the system call stub, wherein one of a third
party process creation function executes code before
a process creation stub function, the third party
process creation function executes code after the
process creation stub function, or no third party
process creation function executes code before or
after the process creation stub function; and

calling the operating system kernel function from the
system call stub.

10. The computer-readable media of claim 9, wherein the
system call stub includes a common stub and a platform
selection stub, and wherein the platform selection stub calls
the operating system kernel function having the first pointer
installed therein.

11. The computer-readable media of claim 9, further
comprising:

handling a system trap, responsive to an application

requesting a system call service.
12. The computer-readable media of claim 9, wherein the
method further comprises:
saving an address of the operating system kernel function
to memory as a second pointer, prior to overwriting the
portion of the operating system kernel function; and

applying the second pointer to call the operating system
kernel function from the agent function.

25

30

35

40

45

50

55

60

12

13. The computer-readable media of claim 9, wherein the
method further comprises:

executing an agent system call function that calls the
agent function and the operating system kernel func-
tion, responsive to the system call stub calling the
operating system kernel function having the first
pointer installed therein, wherein executing the agent
function is responsive to calling the agent function, and
wherein the agent function is executed before or after
the operating system kernel function is executed.

14. The computer-readable media of claim 9, wherein the

method further comprises:

repeating the overwriting with further pointers and further
operating system kernel functions, to intercept a class
of system calls stub implementations relating to a
secure filesystem.

15. A host system, with an operating system, the host

system comprising:

a processor;

a memory coupled to the processor and having a system
call vector and a plurality of operating system kernel
functions therein; and

an agent stored in the memory, the agent configured to
retain an address of an operating system kernel func-
tion, the agent configured to modify the operating
system kernel function by overwriting a portion of the
operating system kernel function as distinct from a
system call table that resides elsewhere in the memory,
to have the modified operating system kernel function
point to an agent function, such that a system call stub
calls the agent function via the system call table point-
ing to the modified operating system kernel function
that points to the agent function, the agent configured
to call the operating system kernel function via the
retained address of the operating system kernel func-
tion, the agent further configured to execute the system
call stub, wherein one of a third party process creation
function executes code before a process creation stub
function, the third party process creation function
executes code after the process creation stub function,
or no third party process creation function executes
code before or after the process creation stub function.

16. The host system of claim 15, wherein the processor is
configured, with the operating system, to make a system trap
responsive to an application, obtain a system call stub from
the system call vector responsive to making the system trap,
execute the system call stub, and call the modified operating
system kernel function from the system call stub.

17. The host system of claim 15, wherein:

the modified operating system kernel function is config-
ured to point to the agent function via a first pointer;
and

the agent is configured to retain the address of the
operating system kernel function as a second pointer
stored in the memory.

18. The host system of claim 15, wherein the agent does

not modify the system call vector.

19. The host system of claim 15, wherein third-party
software modification of the system call vector does not
affect ability of the system call stub to call the agent function
via the modified operating system kernel function.

20. The host system of claim 15, further comprising:

the agent having an agent system call function configured
to invoke the agent function and the operating system
kernel function.

